
ZEROS OF PERTURBED FUNCTIONS
A toy perturbation theory & its real-world relevance

Nicholas Wheeler, Reed College Physics Department

September 2003

Introduction. In recent work1 I had occasion to consider this question:

How do the zeros of f(x) respond to the perturbation f(x) �→ f(x)+εg(x)?

The question is easily answered if one is content to entrust the computational
labor to Mathematica. What most surprised me was the realization that, in
a long mathematical career, I had not had previous occasion to consider the
issue, that I did not know where (if at all) it might be discussed in the literature,
and that the answer was (or on its face seemed to be) unfamiliar to me. I was
struck by the fact that the question manages to capture—in a simplest-possible
setting—the essence of the perturbation theories that students of physics most
typically encounter in contexts where distractingly many other things are going
on simultaneously. What I appeared to have stumbled upon is, in my view, a
“toy perturbation theory” of some potential pedagogical value.

My objective here is to describe that theory and some of its ramifications.

1. The basic idea. Assume f(x) and g(x) to be nicely behaved functions, and
that

f(x0) = 0

Construct the ε-parameterized family of perturbed functions

F (x; ε) ≡ f(x) + εg(x)

and require that

F (x0 + x1ε + x2ε
2 + x3ε

3 + · · · ; ε) = 0

1 “Measurement of trapped atom temperature: elementary theory of the
TOF signal profile” (May), §5. See also §8 in “Measurement of the
temperature of trapped atom populations” (notes from the Reed College Physics
Seminar of September).

2 Zeros of perturbed functions

Mathematica’s Series command supplies

F (x0 + x1ε + x2ε
2 + x3ε

3 + · · · ; ε) = f(x0) + A1(x1)ε

+ A2(x1, x2)ε
2

+ A3(x1, x2, x3)ε
3

+ A4(x1, x2, x3, x4)ε
4 + · · ·

where—if we adopt the abbreviations

f
′ ≡ f

′
(x0)

f
′′ ≡ f

′′
(x0)

f
′′′ ≡ f

′′′
(x0)

...

g ≡ g(x0)

g
′ ≡ g

′
(x0)

g
′′ ≡ g

′′
(x0)

g
′′′ ≡ g

′′′
(x0)

...

—the coefficients Ak can be described

A1(x1) = g + x1f
′

A2(x1, x2) = x2f
′
+ x1g

′
+ 1

2x2
1f

′′

A3(x1, x2, x3) = x3f
′
+ x2g

′
+ x1x2f

′′
+ 1

2x2
1g

′′
+ 1

6x3
1f

′′′

A4(x1, x2, x3, x4) = x4f
′
+ x3g

′
+ 1

2 (x2
2 + 2x1x3)f

′′
+ x1x2g

′′

+ 1
2x2

1x2f
′′′

+ 1
6x3

1g
′′′

+ 1
24x3

1f
′′′′

...

These expressions are of such a design that the equations

A1(x1) = 0
A2(x1, x2) = 0

A3(x1, x2, x3) = 0
A4(x1, x2, x3, x4) = 0

...

can be solved serially for
{
x1, x2, x3, x4, . . .

}
. Mathematica’s Solve command

Basics 3

supplies

x1 = − g

[f ′]

x2 = g

2[f ′]3
{

2f
′
g

′− f
′′
g
}

x3 = − g

6[f ′]5
{

6[f
′
g

′
]2− 9f

′
f

′′
g g

′
+ 3[f

′′
g]2 + 3[f

′
]2g g

′′− f
′
f

′′′
[g]2

}

x4 = g

24[f ′]7
{

24[f
′
g

′
]3 + nine more terms

}

...

(1)

The results reported above may seem patternless and off-puttingly complicated
(and were certainly tedious to typeset), but if one had practical interest in (say)
the structure of x5 one would allow all preceding detail to remain sequestered
within Mathematica’s memory and obtain the desired result in a matter of
seconds. Very little computation time is involved: all depends upon how fast
one can copy output of the initial Series command and paste it into the final
Solve command.

Evidently

xn = (−)n g

n![f ′]2n−1

{
complicated expression

}
: n = 1, 2, 3, . . .

and if x0 is a zero not only of f(x) but also of g(x)—whence of f(x) + εg(x)—
we have x1 = x2 = x3 = · · · = 0 : functional perturbation, in such a case, has
no effect upon the placement of the zero. Not quite so obvious is the reason
why in cases f

′ ≡ f
′(x0) = 0—in cases, that is to say, when the zero lies at an

extremal point—the method fails: x1 = x2 = x3 = · · · = ∞.

